Collocation Method via Jacobi Polynomials for Solving Nonlinear Ordinary Differential Equations
نویسندگان
چکیده
منابع مشابه
Collocation Method via Jacobi Polynomials for Solving Nonlinear Ordinary Differential Equations
We extend a collocation method for solving a nonlinear ordinary differential equation ODE via Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method for solving problems in chemistry, physics, and so forth, see the works of Doha and Bhrawy 2006, Guo 2000, and Guo et al. 2002 . Choosing the optimal polynomial for solving every ODEs problem depends on many f...
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملcomparative study on solving fractional differential equations via shifted jacobi collocation method
in this paper, operational matrices of riemann-liouville fractional integration and caputo fractional differentiation for shifted jacobi polynomials are considered. using the given initial conditions, we transform the fractional differential equation (fde) into a modified fractional differential equation with zero initial conditions. next, all the existing functions in modified differential equ...
متن کاملa collocation method for solving nonlinear differential equations via hybrid of rationalized haar functions
hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equation...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2011
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2011/673085